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Abstract

A computational method is proposed for problems where fluid–structure interaction is combined with solid-rigid con-
tact. This combination is particularly important for the dynamics and impact of heart valves. The Navier–Stokes equation
in an Eulerian setting is coupled to a Neo-Hookean solid model using a Lagrangian description. A fictitious domain
method extended with a local mesh adaptation algorithm provides the required flexibility with respect to the motion
and deformation of the valve. In addition, it ensures the solids ability of sustaining pressures present in the fluid. Making
use of the fact that the fluid and solid mesh are not required to be connected conformingly, it is shown that the model can
be extended with a contact algorithm without introducing meshing complications near the contact surfaces.
� 2006 Elsevier Inc. All rights reserved.
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1. Introduction

Fluid–structure interaction models are increasingly used in biomedical engineering applications and one of
the most challenging fluid–structure problems that can be found in the human body involves the dynamics of
heart valves. The most extensively studied valves are the mitral and the aortic valve. The former is a bileaflet
valve located between the left atrium and left ventricle, the latter is a trileaflet and is located between the left
ventricle and the aortic root. Both valves have extremely thin leaflets, which should hamper flow as little pos-
sible when opened, but need to prevent blood back-flow (regurgitation) if closed. In the closed state the leaflets
are in mutual contact and a large transvalvular pressure gradient will occur. The tissue of which the heart
valves are built, has an anisotropic and heterogeneous structure. The arterial walls and heart muscle are com-
pliant and therefore play an important role in the process of opening and closing. Altogether, the combination
makes the problem extremely complex to model.
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Different ways of modelling fluid–structure interaction (FSI) have been proposed in the past, each having
its advantages and disadvantages. Arbitrary Lagrangian Eulerian (ALE) methods, as exploited by e.g. [1,2],
are most commonly used for FSI problems and have the advantage to provide a strong coupling. As long
as rotations, translations and/or deformations of the solid remain within certain limits, this method works
very well and is recommended. However, for problems in which these limits are violated, elements become
ill-shaped and ALE alone does not suffice. As a solution to this problem an often-used combination is
ALE with some form of remeshing. This can, however, be a difficult and time consuming task.

A more elegant way to solve the system allowing free movements of a structure through a fluid domain was
proposed by Peskin [3]. He introduced a method that later became known as the immersed boundary method
(IBM) [4] where flow-induced solid body motions could be computed without adjusting the fluid grid/mesh.
By defining a set of interconnected points related to each other by some elastic law local body forces were
enforced to the fluid. Extensions of this model to three dimensional heart (valve) problems were published
in e.g. [5,6] and the method is still used in many fields.

A similar method that could cope with these large translations and rotations was used by Glowinski et al.
[7–9]. Using a fictitious domain method the sedimentation of rigid particles in a fluid domain could be com-
puted. The rigid particles are immersed on the fluid domain and are coupled to the fluid by applying con-
straints across the particle using a Lagrange multiplier. This way of coupling allowed for large translations
as well as rotations of the particles.

A method that resembles the above mentioned methods was introduced [11,10] for slender deforming
bodies. In this method a fluid mesh is considered with an immersed solid mesh, and the solid mesh and fluid
mesh are coupled by a Lagrange multiplier (or local body forces) at the boundary of the solid. With respect to
heart valve modelling good results have been obtained in 2D [11] as well as in 3D [12–14]. The elegance of this
method is its simplicity and flexibility. Stijnen et al. [17] introduced a model for mechanical heart valves using
this fictitious domain method. The model was capable of computing a full cardiac cycle, using the fact that the
position of a closed mechanical heart valve is known a priori. By creating the fluid mesh such that a curve of
fluid edges coincided with the solid boundary in the closed state, the occurring drop in pressure across the
valve could be described. Recently, fictitious domain methods have been proposed that are not restricted to
slender bodies by introducing Lagrange multipliers across the whole solid body instead of only along its
boundaries [15,16]. This enables the computation of a pressure drop across the solid body without alignment
of the meshes and such makes the method suitable for a wider range of applications.

The fictitious domain approaches described above have not proven capable of computing shear stresses
along the solid boundaries. Shear stress has been related to blood damage and the upregulation of the endo-
thelial cells that line the entire cardiovascular system and are therefore a parameter of interest in this paper. A
combination of the fictitious domain method with adaptive meshing was proposed by van Loon et al. [18] to
compute moving pressure discontinuities across a flexible leaflet without an a priori known closed position. It
was also shown that the method was able to compute shear stresses quantitatively at both sides of the solid.
An extension of this method to three dimensions has also been published recently by van Loon et al. [19]
together with an improved adaptive meshing scheme. Although some of the flexibility of the original fictitious
domain methods is lost by the introduction of adaptive meshing, accuracy with respect to shear stress is
gained. Note, however, that different discretisations for the fluid and the solid are still allowed.

This paper focusses on a fluid–structure interaction method as the one proposed by van Loon et al. [18]
extending it with a Lagrange multiplier based contact algorithm which enables interaction of the solid with
walls of a fluid domain. The adaptive meshing scheme is a two-dimensional version of the one presented in
[19]. The combination of the fictitious domain method with other established techniques like adaptive meshing
and ALE methods allows not only for accurate motion of the solid body but also accurate fluid behaviour
near the solid–fluid interface. The presented method is able to capture the opening and closing behaviour
of a heart valve in a model problem at sufficient accuracy, that it can be used for heart valve analysis during
a complete cardiac cycle if extended to three dimensions.

The paper is organised as follows. First, the governing equations are given, treating the equations for solid
and fluid, followed by the constraints concerning the fluid–structure interaction and contact. Then the full set
of equations is given in the weak form, after which the discretisation and adaptive meshing are treated. All
techniques are combined in two illustrative finite element model problems, describing thin flexible solid bodies



808 R. van Loon et al. / Journal of Computational Physics 217 (2006) 806–823
in a pulsatile flow, where the solid can make contact with the wall. Pressure fields, shear stresses and solid
motion are observed closely.

2. Governing equations

2.1. Fluid and solid

First, the governing equations that describe an incompressible Newtonian fluid and an incompressible Neo-
Hookean solid, are presented,. The set of equations for the fluid domain, denoted by Xf, read
q
ouf

ot
þ uf � ruf

� �
¼ r � rf þ qf f ; ð1Þ

r � uf ¼ 0; ð2Þ

rf ¼ 2gD� pfI with D ¼ 1

2
ruf þ ðrufÞT
� �

; ð3Þ
and for the solid domain, Xs
r � rs ¼ qf s; ð4Þ
detðFÞ ¼ 1; with F ¼ ðr0xÞT; ð5Þ
rs ¼ G B � Ið Þ � psI with B ¼ F � FT. ð6Þ
Eqs. (1)–(3) and (4)–(6) are the momentum balance, the continuity and the constitutive relation describing the
rheological behaviour of the fluid and solid, respectively. The quantities q, g and G are the density, dynamic
viscosity and shear modulus. The gradient operators with respect to the current and the initial configuration
are denoted with $ and $0, respectively. The vectors x and u denote the position and velocity vector, respec-
tively, and p the pressure. The superscripts ‘f’ and ‘s’ will be used in this paper to distinguish fluid and solid,
respectively. Body forces f s and f f are zero and gravity forces are negligible since a heart valve is almost neu-
trally buoyant.

2.2. Fluid–structure coupling

The fluid domain Xf with an embedded solid domain Xs is considered. In order to capture the fluid–struc-
ture interaction, these two domains need to be coupled. This coupling is obtained by applying a no-slip
condition
uf � us ¼ 0; ð7Þ

at the boundary of the solid oXs. Note that the partial sign o will be used to denote the boundary of a domain.

2.3. Contact

Modelling the interaction of a deformable solid with a rigid contact surface is not very different from mod-
elling the interaction between a fluid and a structure. The main difference lies in the fact that contact is a tem-
porary state while it is assumed that the fluid and structure interact permanently. If a solid approaches a
contact surface nothing will happen until the gap between them approaches zero. From that moment a contact
force, kc, between the bodies will be induced which inhibits the solid body from penetrating the contact surface
and contact occurs until this contact force equals zero again. If we describe the contact surface as a function,
g(x, t) = 0, then for every point at the solid boundary, "xs 2 oXs, a gap distance can be defined as
dc = (xc � xs) Æ nc, where xc is a position at the contact surface (g(xc, t) = 0) and nc the corresponding normal
vector with respect to this body in the direction of the solid body. For every xs a point xc is chosen such that
the distance, min(ixc � xsi), between them is minimized with kxk ¼

ffiffiffiffiffiffiffiffiffi
x � x
p

. A second important quantity with
respect to the contact problem is the contact force, which is defined as kc = kc Æ nc. The constraints correspond-
ing to the different contact states read in the case of ‘‘contact’’
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Fig. 1. Different stages of the contact algorithm.
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dc ¼ 0; ð8Þ

and in the case of ‘‘no-contact’’
kc ¼ 0. ð9Þ

The moment that the solid body penetrates the rigid surface (Fig. 1(b)), the gap distance will be forced to zero
(Eq. (8)) and contact is established (Fig. 1(c)). When the contact force becomes negative (Fig. 1(d)) the solid
body should be released from the contact surface and the trivial ‘‘no-contact’’ constraint (Eq. (9)) is applied.
When a node is in contact the switch of constraints is triggered by evaluating the contact pressure and if a
node is not in contact the switch is triggered by looking at the gap distance. Note that frictionless contact
is assumed since Eq. (8) only restricts the displacement in normal direction.

3. Weak formulation

Based on the governing set of equations and the set of constraints to which they should comply as defined in
the previous sections, the weak formulation for the total set of equations will be derived.

If we define the Lebesgue space L2(X) and Sobolev space Hj(X) as
L2ðXÞ ¼ v :

Z
X

v2 dX <1
� �

;

HjðXÞ ¼ v 2 L2ðXÞ : Dbv 2 L2ðXÞ; jbj 6 j
	 


;

with Dbv the weak derivatives of order b, spaces of acceptable solutions for the solid and fluid velocities can be
defined as
VaðXaÞ ¼ v : v 2 H 1ðXaÞ2; v ¼ ua
0 on oXa

n o
for a ¼ f ; s.
The corresponding trial functions should lie in the space
Va
0ðXaÞ ¼ VðXaÞ : ua

0 ¼ 0
	 


for a ¼ f ; s.
The kinematic constraints given by Eqs. (7)–(9) are enforced by means of the two Lagrange multipliers, kfsi

and kc. Both multipliers are typically defined along the boundary of the solid domain oXs, but depending
on the problem alternative domains can be chosen as will be done later in this paper. In order to distinguish
the two Lagrange multiplier domains, cf and cc are introduced to denote the domain corresponding to the
fluid–structure interaction and the solid contact surface. By using the momentum balance for fluid and solid,
Eqs. (1) and (4), including the multipliers and applying all the constraints equations (2), (5) and (7)–(9), the
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weak formulation for the total set of equations can be formed. Find uf 2 VfðXfÞ, us 2 VsðXsÞ, ps 2 L2(Xs),
pf 2 L2(Xf), kfsi 2 L2(cf)2 and kc 2 L2(cc)2 such that
Z
Xf

wf � q
ouf

ot
þ quf � ruf

� �
dXf �

Z
Xf

2gDðufÞ : DðwfÞdXf þ
Z

Xf
pfr � wf dXf þ

Z
cf

wf � kfsi dcf

¼
Z

oXf
wf � ðrf � nfÞdoXf ; ð10Þ

Z
Xf

qfr � uf dXf ¼ 0; ð11Þ
Z

Xs
ws � r � ss dXs �

Z
Xs

psr � ws dXs �
Z

cf

ws � kfsi dcf �
Z

cc

ws � kc dcc ¼
Z

oXs
ws � ðrs � nsÞdoXs; ð12Þ

Z
Xs

qsðdetðFÞ � 1ÞdXs ¼ 0; ð13Þ
Z

cf

wfsi � ðuf � usÞdcf ¼ 0; ð14Þ
Z

cc

wch dcc ¼ 0 with h ¼
dc for kc > 0; dc

6 0;

kc for kc
6 0; dc P 0;

�
ð15Þ
for all trial functions wf 2 Vf
0ðXfÞ, ws 2 Vs

0ðXsÞ, qf 2 L2(Xf), qs 2 L2(Xs), wfsi 2 L2(cf)2 and wc 2 L2(cc). The
normals at the solid boundary oXs and the fluid boundary oXf are denoted by ns and nf, respectively. Note
that the kinematic constraint with respect to fluid–structure interaction is applied in a ‘‘weak’’ manner, mean-
ing that the integrals over the fluid and solid velocities are forced to be equal along boundary cf. Similarly, the
kinematic constraint for the contact problem is applied. As kc represents the contact force that acts between
the solid and rigid body in the case of contact, so the physical representation of kfsi is the traction force be-
tween solid and fluid. These ‘‘additional body forces’’ are applied to the weak formulations of the balance of
momentum for fluid and solid, Eqs. (10) and (12), in order to satisfy the kinematic constraints. Finally, note
that Eqs. (10) and (12) contain non-linear parts, and should therefore be linearised.

4. Discretisation

Finite-element discretisations are applied for the fluid and solid domain and for the Lagrange multipliers
corresponding to fluid–structure coupling and the contact law. First, we focus on the discretisations of the
fluid and solid domain and the corresponding adaptive meshing scheme. Next, the discretisations of the
Lagrange multipliers corresponding to the fluid–structure coupling and solid-rigid contact will be discussed,
the first of which depends on the fluid discretisation and the latter on the solid discretisation.

4.1. Discretisation of fluid and solid

For convenience, first some definitions concerning a finite element mesh are posed. Therefore, we consider a
domain X � R2 and its boundary oX � R2. If X is subdivided into NX elements Xe with e = 1, . . .,NX, the fol-
lowing relations can be defined with respect to the elements Xe, the elemental edges Cj and elemental vertex
points xk
X ¼
[NX

e¼1

Xe and XS ¼ fe 2 N : Xe6¼i \ Xi ¼ ;g 8i 2 N;

oXe ¼
[NC

j¼1

eCj and CS ¼ fk 2 N : Ck¼eCj;Ck 6¼l \ Cl ¼ ;g 8eCj; 8l 2 N;

oCj ¼
[2
i¼1

jxi and xS ¼ fk 2 N : xk¼jxi; xk 6¼l 6¼ xlg 8jxi; 8l 2 N;
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Fig. 2. Topological definitions.
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where NC is the number of local edges eCj in element Xe. A graphical representation is presented in Fig. 2. Note
that local edges are denoted as iCj and global edges as Cj and similarly jxi and xi are local and global points.
The sets CS and xS contain the numbers of all elemental edges and nodal points of the element vertices in X,
respectively. Every edge and vertex point in the mesh is unique. Now the domains Xf � R2 and Xs � R2 in the
initial configuration can be discretised independently of one another to obtain the non-overlapping, conform-
ing meshes XSf and XSs, respectively. Since these meshes are created independently, they will be non-conform-
ing with respect to each other and overlapping. Mesh XSf is a triangulation while XSs consists of quadrilaterals.

4.1.1. Adaptive meshing

An adaptive meshing procedure is now introduced for adapting the fluid mesh based on the position of the
solid mesh, which is similar to the one proposed by Lock et al. [20]. Although the shape of the solid elements can
be chosen arbitrarily, the element shape of the fluid elements is restricted to a triangular shape for this meshing
procedure. The fluid mesh will be adapted such that an inner fluid curve cf � Xf is created based on the position
of a solid boundary cs � Xs. Along this boundary the solid and fluid mesh will be coupled using Eq. (14). Unlike
the adaptive meshing scheme proposed earlier [18], local topological changes are permitted. We first consider
the solid domain Xs and fluid domain Xf such that Xs \ Xf 6¼ ;. A curve cs needs to be chosen as a collection of
Ns elemental edges of the solid along which the fluid–structure coupling should be established:
cs ¼
[N s

i¼1

Cs
i with i 2 CSs.
Based on the position of this curve the fluid mesh can now be adapted. Therefore, the set of intersection points
ought to be found of all the fluid edges that intersect cs
Sf ¼ i 2 CSf : Cf
i \ cs 6¼ ;;Cf

i \ cs 6¼ Cf
i

	 

;

X i ¼ x : x 2 Cf
i \ cs

	 

8i 2 Sf .
Note that Sf contains the edge numbers of all edges that intersect cs and Xi contains all corresponding inter-
section points. If more than one intersection point is stored in Xi, only one, arbitrarily chosen, point is taken
into account in the remainder of the adaptive meshing algorithm. Now, a parameter ei can be introduced,
which describes the relative position of an intersection point along an edge:
ei ¼
kxi�ix1k
kix2�ix1k

8xi 2 X i.
Based on this parameter together with the pre-defined parameter ê, set Sf can be subdivided into the subsets
Sf1 ¼ i 2 Sf : ei < êkCf
ik

	 

;

Sf2 ¼ i 2 Sf : ei > ð1� êÞkCf
ik

	 

;

Sf3 ¼ i 2 Sf : êkCf
ik < ei < ð1� êÞkCf

ik
	 


;



812 R. van Loon et al. / Journal of Computational Physics 217 (2006) 806–823
in which kCf
ik � kix2 � ix1k is the length of an edge. The arbitrary parameter ê should have a value between 0

and 0.5 and is explained graphically in Fig. 3. In this way, every intersected fluid edge is subdivided into three
parts and sets Sf1, Sf2 and Sf3 contain the edge numbers of the edges that are intersected in part one, two or
three, respectively. Using these three sets the actual adaptation of the mesh is performed as follows:
Fig. 3.
fluid n

Fig. 4
xn1
¼ xi with xi 2 X i; n1 2 xSf ; 8i 2 Sf1;

xn2
¼ xi with xi 2 X i; n2 2 xSf ; 8i 2 Sf2;

x̂n̂i ¼ xi with xi 2 X i; 8i 2 Sf3;
in which xn1
¼ix1, xn2

¼ix2 and x̂n̂i is the position of a newly created node n̂i on edge Cf
i . From the above it fol-

lows that fluid nodes are either repositioned or added to the mesh. At the intersection point of the edges in Sf3,
a new node is created. Consequently, each of these intersected edges is divided into two new edges. For all
edges in Sf1 and Sf2 the begin or end node are shifted to the position of the intersection, respectively. We im-
pose that the position of a node is allowed to be changed only once, even if this node is shared by several inter-
sected edges. After the procedure of relocating and adding edges, topological changes are processed.
Depending on the number of intersections a triangular fluid element is split into several elements. Elements
with one, two and three intersected edges are subdivided into two, three and four new elements, respectively.
There are two ways of subdividing a triangle with two intersections into three sub-triangles and in our case the
subdivision was chosen, which leads to the best-shaped sub-triangles, i.e., resembling an ideal triangular ref-
erence element closest. Note that for small values of parameter ê more elements will be created (Fig. 4), how-
ever, the created elements will be increasingly ill-shaped. Now, using the edges Cf

i � Xf , of the adapted fluid
mesh XSf*, the new subdomain cf � Xf can be defined as
cf ¼ x 2 Cf
i : ix1 2 cs; ix2 2 cs

	 

8i. ð16Þ
Since cs is part of the solid, which moves through the fluid domain, curve cf, which is based on cs, will also
change every time step.

4.1.2. Smoothing

In order to improve the shape of the fluid elements near cf, Laplacian smoothing is applied [21] to the fluid
vertex nodes lying in the vicinity of, but not on cf, according to
xj ¼
1

wN

XN

k¼1

wkxk with wN ¼
XN

k¼1

wk. ð17Þ
Fluid edge of length ‘ that is subdivided into parts A and B depending on ê. If the fluid edge is intersected in part A then the closest
ode is shifted, if part B is disected then a new fluid node is added.

(a) (b) (c)

. A triangular fluid mesh is intersected by a boundary (a), after which the fluid mesh is adapted for ê ¼ 0:2 (b) and ê ¼ 0:5 (c).
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Symbol N denotes the number of mesh points xk = ix1 sharing an edge Ci with point xj = ix2. The weight func-
tions wk corresponding to xk can be used for introducing gradients in element size. In the case wk = 1, point xj

will be repositioned to the geographical center of the surrounding points. However, if values larger than one
are chosen for nodes that lie closer to cf, a refinement is obtained perpendicular to this boundary which is con-
venient since velocity gradients are largest in the boundary layer. This way the overall mesh size can be coarser
reducing computational effort without compromising accuracy. The size of the area which will be smoothed is
adjustable depending on the needs.

4.1.3. Element choice

The solid domain is discretised using quadratic nine noded quadrilaterals or so-called Q2 � P1 elements as
for the fluid domain seven noded quadratic triangles or Pþ2 � P 1 elements are used. Both elements are so-called
Crouzeix–Raviart type of elements, i.e., elements with a discontinuous pressure approximation. Space Q2 con-
tains biquadratic polynomials used for the approximation of the solid displacements. Spaces P2 and P1 con-
tain the polynomials of order two and one, respectively, used for the approximation of the fluid velocity and
the pressure. The + sign denotes the enrichment of the elements by a third-order term which vanishes at the
element boundary. Note that these elements are not arbitrarily chosen, since the discontinuous pressure inter-
polation for the fluid elements (across element borders) will be used to capture pressure gradients in the fluid
domain across the solid as will be discussed in Section 5.1. Finite element spaces for velocity vectors uf, us and
pressures pf and ps read, respectively
Wf
h ¼ uf

h 2 C0ðXÞ2 : uf
hje 2 ðPþ2 Þ

2
; 8e 2 XSf�; uf

hjoXf ¼ 0
n o

;

Ws
h ¼ us

h 2 C0ðXÞ2 : us
hje 2 ðQ2Þ

2
; 8e 2 XSs; us

hjoXs ¼ 0
n o

;

Lf
h ¼ qf

h : qf
hje 2 P 1; 8e 2 XSf�	 


;

Ls
h ¼ qs

h : qs
hje 2 P 1; 8e 2 XSs

	 

.

Note that the introduction of second-order elements for fluid and solid also allows for quadratically curved
element edges. To achieve this, the mesh can be adapted as described in Section 4.1.1 based on the vertex
nodes of the triangular elements, performing only one additional step to change cf. The fluid edges Cf

i that
have ix1 and ix2 on cf become curved by projecting their center nodes onto cs in normal direction of edge
Cf

i . This way the geometrical difference between cs and cf reduces, improving the accuracy of solutions.

4.2. Discretisation of the Lagrange multiplier for fluid–structure interaction

Since boundary cf changes every time step, this has some implications for the discretisation of the Lagrange
multiplier kfsi, that is defined along cf. As derived earlier cf consists of a set of fluid edges and the discretisation
of kfsi is taken equal to discretisation of the fluid element edges of which cf consists. Piecewise discontinuous
linear polynomials are used for the multiplier resulting in the corresponding finite element space
Wfsi
h ¼ kfsi

h : kfsi
h je 2 P 1; 8e 2 cf

S
n o

;

where cf

S contains the edge numbers of the fluid edges in cf. Although different kinds of interpolation poly-
nomials were tested, discontinuous linear interpolation led to the best result (without spurious currents at
the solid–fluid interface), which might be expected since internal stresses and pressures are similarly described.

As stated in several papers [8,10,12,15], a combination of sufficient accuracy and stability has to be found in
a fictitious domain method. Finer discretisations of Lagrange multiplier kfsi lead to higher accuracy, while sta-
bility problems or even locking can occur when the discretisation of kfsi becomes too fine with regard to the
fluid or solid mesh. Additionally, the order of the interpolation functions used for multiplier and gradients in
the element size for the multipliers are of importance. It is hard to find general rules that apply to the various
existing problems. This is demonstrated by the findings of Yu [15] that the solid element size hs should be equal
or larger than the fluid element size hf, when using the same discretisation for the multiplier as for the solid.
Baaijens [10], on the other hand, found that in his approach hs should be preferably smaller than hf.
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In Baaijens et al. [10], the Lagrange multiplier was discretised based on the discretisation of the solid result-
ing in a fixed amount of coupling elements throughout the computation. This approach has been examined with
the incorporation of the adaptive meshing scheme for slender solid bodies moving in a fluid domain. However,
depending on the position of the solid (and therefore coupling) elements with respect to the fluid mesh, the fluid
solution near the solid was too low to derive sufficiently accurate shear stress information. Therefore, we
decided to discretise the multiplier based on the fluid mesh such that each fluid element coincided with exactly
one coupling element. The result was an accurate fluid solution near the solid boundary without introducing
inaccuracies for the solid solution. The solid is probably less sensitive to the discretisation of the Lagrange mul-
tiplier due to its high stiffness compared to the low-viscid fluid. Only when hs < 0.2hf spurious modes have been
obtained in the solid body, but this highly depends on the type of loading, e.g., compression (bending) versus
tension, and the corresponding deformations. Variations of the solid mesh size up to hs = 3.5hf have given good
results, reserved that it is possible to compute the deformation in a static case with that solid mesh.

In case boundary cs is not a closed boundary it is likely to occur that cf will not be equal to cs. When cs ends
within a fluid element the adaptive meshing scheme does not accommodate for a coupling element in this area.
A small part of cs, which depends on the element size of the fluid elements, will therefore not be coupled to the
fluid, introducing leakage through this part. In the model problems, presented in Section 5, this error was
reduced by applying a Lagrange multiplier at the free end of cs and couple fluid and solid in a more global
manner as proposed by de Hart et al. [11].

4.3. Discretisation of the Lagrange multiplier for solid-rigid contact

The Lagrange multiplier corresponding to the contact problem is discretised somewhat differently to that in
Section 4.2. For sake of simplicity with respect to the determination of the gap distance, the multiplier is only
evaluated in the nodal points of the solid contact surface cc. In this way the curvature of the quadratic solid
elements is not fully taken into account in the case of contact, which is allowed for fine discretisations of the
solid domain, resulting in low curvature per element. The corresponding finite element space for this colloca-
tion method then reads
Wc
h ¼ kc

h : kc
hji ¼ kc

h;idðx� xs
iÞ; k

c
h;i 2 R; 8i 2 cc

S
n o

;

with cc

S a set containing the numbers of all solid nodes on boundary cc and d denoting the Dirac function.

4.4. Combined fluid–structure interaction/contact

In the case of contact, two contradicting boundary conditions are present in this region. Firstly, Eq. (7), which
couples the fluid to the solid and secondly, Eq. (8) which provides for the contact between fluid wall and solid, but
allows slip. Furthermore, Dirichlet boundary conditions are present at the fluid wall. Therefore, a choice should
be made as to these constraints should be the predominant one. If Eq. (7) would ‘overrule’ Eq. (8), a no-slip con-
dition along the fluid wall would also be enforced to the solid, preventing it to come off the wall. In case Eq. (8) is
dominant over Eq. (7) any essential boundary condition, applied to the wall will hold no effect on the solid. In the
model presented here, fluid–structure coupling elements that have nodes with Dirichlet boundary conditions, are
‘disabled’. For the degree(s) of freedom to which these boundary conditions are applied Eq. (7) is replaced by
kfsi � n ¼ 0; ð18Þ

where n denotes the direction in which the Dirichlet boundary condition holds. The Lagrange multiplier is
such eliminated from the momentum equations by enforcing it to zero. This allows for free slip of the solid
along and loosening from the fluid wall, although boundary conditions may enforce the opposite.

4.5. Full set of discretised equations

If a backward Euler scheme is used for the time discretisation. Taking a first-order approximation for the
solid velocity us = Dxs/Dt and applying it to Eqs. (12), (13) and (15) then leads to a set of equations in



R. van Loon et al. / Journal of Computational Physics 217 (2006) 806–823 815
which fluid and solid velocities are solved. The structure of the total set of discretised equations is then
given by

in which the solid and fluid system matrices Kf and Ks can be recognised with corresponding divergence matri-
ces Lf and Ls. With respect to fluid-interaction the matrices Kf

fsi and Ks
fsi are added to meet the dynamic con-

straint and corresponding matrices Gf
fsi; Gf

fsi and Gno-fsi in order to meet the kinematic constraint. This last
matrix is filled in case there are nodes in contact. Similarly, Kcont is added to meet the dynamic constraint
and Ccont and Cno-cont take care of the kinematic condition for the contact problem in the case of contact
and no-contact, respectively. A Newton–Raphson iteration scheme is performed each time step to solve the
non-linear set of equations. Note that, within this scheme the current state of contact is evaluated at each iter-
ation step. This implies that the contact distance or direction of normal nc can alter and nodes that are in con-
tact might be released in the iterative procedure. However, the system is in equilibrium after convergence of
the scheme at the end of each time step. The finite element package SEPRAN [22] is used and extended for
building the matrix and mapping the solutions. The set of equations is solved fully coupled and the asymmet-
ric sparse matrix is solved using a direct method based on a sparse multifrontal variant of Gaussian elimina-
tion (HSL/MA41) [23].
4.6. Combined ALE and mapping

Coupling a non-conforming fluid and solid mesh allows for a relatively simple way of extending the fluid–
structure algorithm with contact. In ALE methods as often used for fluid–structure interaction problems, the
Eulerian fluid mesh moves in a Lagrangian way ‘fixed’ to the solid. If the solid approaches a boundary (e.g.,
fluid wall) fluid elements will be squeezed. Unlike these ALE methods, the boundary (cf) at which the no-slip
condition (Eq. (7)) is applied, changes in time. As shown earlier, cf ˝ cs, which implies that the region along
which no-slip holds can be smaller than the region along which it should hold. Although this introduces an
inaccuracy as mentioned earlier, it allows for approaching boundaries and sliding along boundaries without
the risk of squeezing fluid elements.

The reason for introducing an adaptive meshing algorithm was the need for accurate shear stresses and
pressures at both sides of the solid. Since the Lagrangian solid moves in time, the fluid mesh requires contin-
uous updating. Every time step an adapted fluid mesh XSf* is computed based on the initially generated fluid
mesh XSf using the adaptive meshing algorithm as described in Section 4.1.1. The set of equations is solved
using the adapted mesh XSf* after which the solid is updated. Another adapted mesh XSf** is then generated
based on the new position of the solid and on mesh XSf. Since XSf* and XSf** are both created from XSf, large
parts of these meshes will coincide except near the solid position. Within one time step an ALE and mapping
procedure are used for projecting the old solution onto the XSf** as accurately as possible, which will be
explained next and which is also drawn schematically in Fig. 5.

Firstly, an auxiliary mesh is generated by repositioning all nodes ni that lie on curve cf with step size,
Dxi = ui * Dt, resulting in a mesh which is topologically identical to XSf*, but has a set of fluid nodes that
are shifted towards the new position of the solid. Applying these steps incrementally and alternating with a



Fig. 5. Schematic representation of mapping procedure using 1D meshes. The velocity field is available on Mesh A and projected through
the topological identical Mesh B to Mesh C. For every node ni a solution uf

i can be found by interpolation. The distance Dxi between the
positions in Mesh A and Mesh B at which this solution is found can be divided by the time step to obtain the grid velocity of node ni.
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Laplacian smoothing procedure as described in Section 4.1.1, prevents elements with negative Jacobian. Note
that near borders of the fluid domain squeezing elements to zero-volume is possible in the case of contact. This
does, however, not cause problems since this auxiliary mesh will not be used for computational purpose, but is
only a tool for mapping solutions from XSf* to XSf** more correctly.

Secondly, for every node ni in XSf** an old velocity uf
i and grid velocity ugrid

i have to be determined. There-
fore, we need to find in which element of the auxiliary mesh ni is situated and determine the relative position
within this element, after which the old velocity uf

i is computed using the interpolation functions of the Pþ2 � P 1

elements. Note that the topological similarities between the meshes contribute to fast element searching. Since
the old solution is derived from the auxiliary mesh and not from XSf*, convection of this point should be
accounted for by determining the global position in XSf* based on the local position within the element.
The distance between this global position and current position of ni divided by the time step gives the grid
velocity ugrid

i , which can be used to incorporate the convection of point ni [2]. The convective part in
Eq. (3) can then be rewritten as
qðuf � ugridÞ � ruf . ð19Þ

Some remarks can be made with respect to the projection of the velocity field from one mesh to another.
Mapping solutions between two topologically different meshes by interpolation is known to result in a non-
divergence free flow, especially when the velocity gradients are large. However, this introduced error is found
to be small for several reasons. Firstly, an ALE step is undertaken in order to capture the large velocity gra-
dients across the solid more correctly. Secondly, the parts of the meshes, which are topologically different, are
small. Thirdly, the velocities at the solid boundary are constrained (Eq. (7)) and divergence free flow enforced
every time step (Eq. (2)), which prevents error cumulation. In addition, we should note that although zero-
volume elements are allowed in the auxiliary mesh, these elements should not be taken into account for the
interpolation.

5. Numerical experiments

Two-model problems are presented that treat the movement of a flexible slender solid body through a fluid
domain induced by a pulsatile flow that is applied at the inlet of the fluid domain. The method allows for inter-
action of the solid with the walls of the fluid domain. The fluid dynamics (velocities and pressures) as well as
the movement and deformation of the solid (displacements and pressures) are presented. Different velocity and
pressure fields at either side of the solid are shown and furthermore the computation of derived quantities like
shear stresses along the solid boundary or stresses and strains inside the solid body, which are important in
heart valve analysis, is possible.

5.1. Contact of solid slab in pulsatile flow

In the first model problem we consider a rectangular fluid domain with a thin rectangular solid inside as
shown in Fig. 6, with the following essential boundary conditions:



Fig. 6. Schematic representation of a mitral valve Xs in a fluid canal Xf. The papillary muscle is denoted by Xsp which is attached to Xs at
one side and can slide along oXs

2 at the other with point ‘A’ prohibited to tresspass the contact wall.
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uf
1 ¼ 0 at oXf

1;

uf
1 ¼ umax sinð2pt=T Þ at oXf

3;

uf
2 ¼ 0 at oXf

i with i ¼ 1; . . . ; 4;

us ¼ 0 at oXs
1;

ð20Þ
with uf ¼ ½uf
1; u

f
2�. Note that domain Xsp is not incorporated in this first model problem. In Fig. 7 the relevant

dimensional parameters are given and the corresponding values for the models in this and the following section
are shown in Table 1. The fluid domain has a finer discretisation in the area around the solid but for the long
inlet and outlet, that are introduced to prevent boundary effects, a coarser discretisation is used. The solid mesh
is discretised into 40 quadrilateral elements (2 elements across the thickness times 20 elements along the length).
For the fluid mesh a total of 3402 triangular elements is used. Note that this is the number of fluid elements
prior to the computations, but that this amount increases due to adaptive meshing. In this model problem
parameter ê is set to 0.2, which causes the actual number of fluid elements to vary between 3424 and 3472.
The number of coupling elements lies between 26 and 40. Since the width of the solid is very small compared
to its length, it is assumed that only coupling along boundary oXs

1 is needed. As a consequence the mesh will be
adapted only along this solid boundary. Consequentially, boundary oXs

2 is defined as the deformable contact
surface in the contact problem, while boundary oXf

2 is defined as the rigid contact surface in the problem.
. Schematic representation of the solid and fluid including the relevant geometric parameters. Corresponding values for the
ical experiments performed in Sections 5.1 and 5.2 are given in Table 1.

1
nt geometric parameter values for the numerical experiments

Hf (cm) Wf (cm) Hs (cm) W s
1 (cm) W s

2 (cm) W sp
1 (cm) W sp

2 (cm)

ical experiment 5.1 2.0 40.0 1.9 1.0 5 · 10�2 – –
ical experiment 5.2 1.0 24.0 0.9 2.0 5 · 10�2 1.0 3.0



Table 2
Relevant parameter values for the numerical experiments

umax (m/s) pmax (Pa) g (Pa s) q (kg/m3) Dt (s) T (s) G (MPa)

Numerical experiment 5.1 0.2 – 4.0 · 10�3 103 10�3 1.0 1.2
Numerical experiment 5.2 – 500.0 4.0 · 10�3 103 10�3 1.0 1.0
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The material and time related parameter values used for the numerical experiments of this and the follow-
ing section are shown in Table 2. This leads to a maximum Reynolds number of 1000 for this problem and a
Strouhal number of 0.6, taking the height of the canal and the maximum applied velocity at the inlet as char-
acteristic length and velocity, respectively.

Streamline plots at several moments are given (Fig. 8(a)–(d)) to get an idea of the flow field in time. The
computation starts when the solid body is about to be in contact with oXf

2. After several time steps it is in
contact with oXf

2 and, induced by the applied flow at oXf
3, the solid starts to slide along oXf

2. At this point
we need to remark that due to the choice of oXs

2 as the deformable contact surface penetration of the remain-
ing part of the solid body is allowed. However, defining the entire solid boundary as the deformable contact
surface would lead to leakage in the closed situation, since FSI coupling is only applied along oXs

2. Due to its
stiffness, the solid inhibits the flow and the pressure will start to rise in the left part of the fluid (Fig. 9(a)). Note
that the model is able to describe this pressure drop, by the combination of adaptive meshing and use of the
Pþ2 � P 1 fluid elements. The adaptive meshing provides for a set of fluid edges coinciding with oXs

2 and the
Pþ2 � P 1 fluid elements are able to compute the discontinuity of the pressure across this set of fluid edges
[18]. The solid will slide along oXf

2 until it has bent sufficiently such that the contact pressure becomes 0.
Fig. 8. The streamline plots and position of the solid slab at different moments in time: (a) t/T = 0.1, (b) t/T = 0.12, (c) t/T = 0.3, and (d)
t/T = 0.59.



Fig. 9. Pressure contour bands and fluid mesh at different moments in time: (a) t/T = 0.1, (b) t/T = 0.12, (c) t/T = 0.3, and (d) t/T = 0.59.
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Due to the elastic energy stored in the solid during bending this loosening from the wall happens very quickly
even inducing a negative pressure at the left side of the tip (Fig. 9(b)). Contact is released and pressure in the
left part of the fluid domain will start to drop caused by the squeezing flow between solid and boundary. The
solid bends further until an apparent stationary position is obtained (Fig. 9(c)). In the second part of the com-
putation, a similar movement of the solid is seen only in reversed direction (Fig. 9(d)).

In Fig. 10, the Lagrange multiplier in the x-direction is plotted at several time steps at the moment that the
solid releases from the wall. This moment is interesting since there is a pressure difference present between the
left and right part of the fluid domain. Furthermore, elastic energy is stored in the solid due to bending. This
‘‘unbalance’’ in energy is released in a short period of time. As mentioned earlier the physical meaning of the
Fig. 10. Lagrange multiplier in x-direction along the solid during ‘‘opening’’.
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multiplier in our problem is the traction stress between fluid and solid, and provides us with a good impression
of the actual interaction. At t/T = 0.1165 and t/T = 0.1175, the solid still makes contact with the surface and it
inhibits the fluid to flow in the positive x-direction. However, at t/T = 0.1185 the valve detaches from the wall
and the solid starts to accelerate resulting in a change of sign of the multiplier. For a short period the solid
pushes the flow in the positive x-direction. The last two time steps in Fig. 10 again show a change in sign.

5.2. 2D mitral valve

It is difficult to mimic the behaviour of a three dimensionally shaped aortic valve into a two dimensional
computational model, because the shape of the valve has large influence on its overall stiffness, which cannot
be captured in two dimensions. In this respect a 2D model of a mitral valve is more representative. Since the
shape of this bileaflet does not contribute sufficiently to the overall stiffness nature has ‘invented’ the chordae
tendae. These muscles that are attached to the heart wall on one side and to the leaflet tip on the other side,
prevent the leaflets from prolapsing. During opening of the valve the muscle contracts thereby not hampering
the leaflets. In this second model problem we aimed to mimic this behaviour by introducing domain Xsp as
shown in Fig. 6. This almost rigid solid is attached to Xs at one end allowing free pivoting, and attached
to the fluid wall at point ‘A’ along which it can slide freely. However, this point is not allowed to pass the
contact wall denoted by the dotted line. All relevant geometric parameters for this problem are given in
Fig. 7 with corresponding values presented in Table 1. In this problem solid mesh is discretised into 100 quad-
rilateral elements (2 elements across the thickness times 50 elements along the length).

The boundary conditions are similar to the ones defined for the model problem in Section 5.1, except for the
essential boundary condition at the inlet oXf

3 which is replaced by a natural one reading
Fig. 11
t/T > 0
tip in t
elemen
pf ¼ pmax sinð2pt=T Þ at oXf
3. ð21Þ
The motion of domain Xs induced by the fluid is shown in Fig. 11(a) over one full sinus. First, pressure will
build up in the left part of the fluid domain pushing the solid to the right as given by the solid lines. Since the
leaflets are flexible the solid tends to prolapse as seen in the first model problem. However, at a certain moment
(a)

(b) (c)

. Motion of a 2D mitral valve in a pulsatile flow (a). The solid and dashed lines represent the motion in time for t/T < 0.5 and

.5, respectively. The corresponding points in time are given in (b) and (c) by the asterisks. In (b) and (c) the x- and y-position of the
ime is given for three different meshes, respectively. The difference between ‘coarse’ and ‘coarse +’ is that the latter has a thin layer of
ts along its contact boundary, improving solutions.



(a) (b)

Fig. 12. Shear stresses along both sides of the solid for a coarse and fine mesh at t/T = 0.64 (a) and t/T = 0.96 (b) (mitral valve
computation).
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in time point ‘A’ reaches the contact wall (Fig. 6), which prohibits the solid tip to move further. If the pressure
in the left part of the domain drops the solid will start moving to the left as denoted by the dash-dotted lines.
In order to zoom in on the behaviour near the fluid wall the x- and y-position of the tip plotted as a function of
time, respectively, for different discretisations of the fluid mesh (Fig. 11(b) and (c)). The asterisks in these
graphs denote the points in time at which the solid is plotted in Fig. 11(a). The ‘‘coarse’’ mesh and ‘‘coarse
+’’ (approximately 900 fluid elements) mesh have the same discretisation except for a very thin layer of fluid
elements along the fluid wall. Comparison of the results shows that this layer improves the solution largely,
since it influences the moment of contact and release, which are important for the overall movement of the
solid. In case a layer is present the solid motion is almost similar to that computed with a fine mesh (approx-
imately 3800 fluid elements). In the area around the solid this fine mesh has an element size about 2.5 times as
small as that of the coarse meshes.

Beside discontinuous pressures, the Pþ2 � P 1 elements also allow for discontinuities in the derivatives of the
velocities across the element borders, which can be used to compute shear stresses at both sides of the solid.
Fig. 12(a) and (b) shows the shear stress along the solid at t/T = 0.64 and t/T = 0.96, respectively, at both sides
of the solid. Although the coarser mesh hardly influenced the solid motion, a certain mesh resolution is needed
for capturing the shear stresses accurately. The Reynolds number based on average inlet velocity and height of
the domain is approximately 1750 at t/T = 0.96. The Strouhal number at this point is about 0.09.

6. Conclusion

A method is proposed to compute the motion of a heart valve in a pulsatile blood flow. Transvalvular pres-
sure gradients can be described and shear stresses at either side of the valve can be accurately computed. Fur-
thermore, sliding of the valve along a symmetry axis is performed in a fully coupled FSI/contact problem. The
method is tested in two-model problems showing these phenomena.

Using a finite element method a fluid mesh and an immersed solid mesh are generated independently of one
another. The fluid mesh is adapted every time step near an arbitrarily defined boundary of the solid at which
fluid–structure coupling should take place. Depending on where this boundary intersects a fluid element, a
vertex node of this element is shifted onto the boundary or the element is split by adding a node onto the
boundary. This way an inner fluid curve is created which consists of fluid edges and coincides with the chosen
solid boundary. Next, a Lagrange multiplier can be defined along this fluid curve that imposes that fluid and
solid velocities should equal at this curve. By imposing this constraint weakly, discretisations for the solid and
fluid mesh can be different.

To describe the closing and opening behaviour of a valve it is necessary to extend this fluid–structure part with
contact. Therefore, we define a rigid body, whose position is known, and a contact surface, which is (part of) the
boundary of the solid body. By introducing an extra constraint to the existing set of equations the contact surface
can be prohibited from penetrating the rigid body. In this paper, free slip along the rigid surface is allowed.
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The weak form of fluid–structure coupling allows not only for large movements of the solid through the
fluid domain, but also simplifies the introduction of contact. Since fluid and solid meshes are non-conforming
with respect to each other the solid can approximate the boundaries without squeezing elements. The method
combines the benefits of techniques with Lagrange multipliers, adaptive meshing and ALE methods, resulting
in an implicit code solving a fully coupled system and capturing difficult behaviour with good accuracy.

The combination of these techniques were shown and discussed in two-model problems. The first problem
treats the movement of a flexible solid in a channel induced by a pulsatile flow at the inlet of the canal. The
thin long solid is attached to the upper wall of the canal and is allowed to make contact with the symmetry
axis. Throughout the computation the solid makes contact, a pressure difference builds up in the fluid across
the solid, the solid releases from the wall, which lowers the pressure difference. The second problem is a 2D
representation of a mitral valve thereby introducing an extra solid denoting the papillary muscle, which pre-
vents the leaflets from prolapsing. In this problem the movement near the boundary was studied more closely
and shear stresses along both sides were presented.

In this way some complexities of heart valve analysis are overcome, but some critical notes are appropriate
here. The model as presented in this paper only addresses 2D computations as 3D influences are essential in
heart valve analysis. Furthermore, the compliance of the wall has not been taken into account, which is known
to be of importance for the closing behaviour of a valve and the material law of the solid is rather simplistic for
modelling the fiber reinforced leaflets. However, the purpose of this work was to propose a method which is
flexible enough to accurately capture the movement of a solid in a fluid including a contact problem and which
has the potential to being extended to 3D.
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